53 research outputs found

    Relationship between Tibial conformation, cage size and advancement achieved in TTA procedure

    Get PDF
    Previous studies have suggested that there is a theoretical discrepancy between the cage size and the resultant tibial tuberosity advancement, with the cage size consistently providing less tibial tuberosity advancement than predicted. The purpose of this study was to test and quantify this in clinical cases. The hypothesis was that the advancement of the tibial tuberosity as measured by the widening of the proximal tibia at the tibial tuberosity level after a standard TTA, will be less than the cage sized used, with no particular cage size providing a relative smaller or higher under-advancement, and that the conformation of the proximal tibia will have an influence on the amount of advancement achieved

    Repeatability of short-duration transient visual evoked potentials in normal subjects

    Get PDF
    To evaluate the within-session and inter-session repeatability of a new, short-duration transient visual evoked potential (SD-tVEP) device on normal individuals, we tested 30 normal subjects (20/20 visual acuity, normal 24-2 SITA Standard VF) with SD-tVEP. Ten of these subjects had their tests repeated within 1–2 months from the initial visit. Synchronized single-channel EEG was recorded using a modified Diopsys Enfant™ System (Diopsys, Inc., Pine Brook, New Jersey, USA). A checkerboard stimulus was modulated at two reversals per second. Two different contrasts of checkerboard reversal patterns were used: 85% Michelson contrast with a mean luminance of 66.25 cd/m2 and 10% Michelson contrast with a mean luminance of 112 cd/m2. Each test lasted 20 s. Both eyes, independently and together, were tested 10 times (5 times at each contrast level). The following information was identified from the filtered N75-P100-N135 complex: N75 amplitude, N75 latency, P100 amplitude, P100 latency, and Delta Amplitude (N75-P100). The median values for each eye’s five SD-tVEP parameters were calculated and grouped into two data sets based on contrast level. Mean age was 27.3 ± 5.2 years. For OD only, the median (95% confidence intervals) of Delta Amplitude (N75-P100) amplitudes at 10% and 85% contrast were 4.6 uV (4.1–5.9) and 7.1 uV (5.15–9.31). The median P100 latencies were 115.2 ms (112.0–117.7) and 104.0 ms (99.9–106.0). There was little within-session variability for any of these parameters. Intraclass correlation coefficients ranged between 0.64 and 0.98, and within subject coefficients of variation were 3–5% (P100 latency) and 15–30% (Delta Amplitude (N75-P100) amplitude). Bland–Altman plots showed good agreement between the first and fifth test sessions (85% contrast Delta Amplitude (N75-P100) delta amplitude, mean difference, 0.48 mV, 95% CI, −0.18–1.12; 85% contrast P100 latency delay, −0.82 ms, 95% CI, −3.12–1.46; 10% contrast Delta Amplitude (N75-P100) amplitude, 0.58 mV, 95% CI, −0.27–1.45; 10% contrast P100 latency delay, −2.05 mV, 95% CI, −5.12–1.01). The inter-eye correlation and agreement were significant for both SD-tVEP amplitude and P100 latency measurements. For the subset of eyes in which the inter-session repeatability was tested, the intraclass correlation coefficients ranged between 0.71 and 0.86 with good agreement shown on Bland–Altman plots. Short-duration transient VEP technology showed good within-session, inter-session repeatability, and good inter-eye correlation and agreement

    The Relative Contribution of High-Gamma Linguistic Processing Stages of Word Production, and Motor Imagery of Articulation in Class Separability of Covert Speech Tasks in EEG Data

    Get PDF
    Word production begins with high-Gamma automatic linguistic processing functions followed by speech motor planning and articulation. Phonetic properties are processed in both linguistic and motor stages of word production. Four phonetically dissimilar phonemic structures “BA”, “FO”, “LE”, and “RY” were chosen as covert speech tasks. Ten neurologically healthy volunteers with the age range of 21–33 participated in this experiment. Participants were asked to covertly speak a phonemic structure when they heard an auditory cue. EEG was recorded with 64 electrodes at 2048 samples/s. Initially, one-second trials were used, which contained linguistic and motor imagery activities. The four-class true positive rate was calculated. In the next stage, 312 ms trials were used to exclude covert articulation from analysis. By eliminating the covert articulation stage, the four-class grand average classification accuracy dropped from 96.4% to 94.5%. The most valuable features emerge after Auditory cue recognition (~100 ms post onset), and within the 70–128 Hz frequency range. The most significant identified brain regions were the Prefrontal Cortex (linked to stimulus driven executive control), Wernicke’s area (linked to Phonological code retrieval), the right IFG, and Broca’s area (linked to syllabification). Alpha and Beta band oscillations associated with motor imagery do not contain enough information to fully reflect the complexity of speech movements. Over 90% of the most class-dependent features were in the 30-128 Hz range, even during the covert articulation stage. As a result, compared to linguistic functions, the contribution of motor imagery of articulation in class separability of covert speech tasks from EEG data is negligible

    Seizure prediction : ready for a new era

    Get PDF
    Acknowledgements: The authors acknowledge colleagues in the international seizure prediction group for valuable discussions. L.K. acknowledges funding support from the National Health and Medical Research Council (APP1130468) and the James S. McDonnell Foundation (220020419) and acknowledges the contribution of Dean R. Freestone at the University of Melbourne, Australia, to the creation of Fig. 3.Peer reviewedPostprin

    Intra-operative localization of sensorimotor cortex by cortical somatosensory evoked potentials: From analysis of waveforms to dipole source modeling

    No full text
    Intra-operative localization of sensorimotor cortex is of increasing importance as neurosurgical techniques allow safe and accurate removal of lesions around the central sulcus. Although direct cortical recordings of somatosensory evoked potentials (SEPs) are known to be helpful for cortical localization, source localization models can provide more precise estimates than subjective visual analysis. In addition to intra-operative analysis of waveforms and amplitudes of SEPs to median nerve stimulation in 20 neurosurgical patients, we used a spatiotemporal dipole model to determine the location of the equivalent dipoles consistent with the cortical distribution of the SEPs. The early cortical SEPs were modeled by 2 equivalent dipoles located in the postcentral gyrus. The first dipole was primarily tangentially oriented and explained N20 and P20 peaks. The second dipole was primarily radially oriented and explained P25 activity. We found consistent localization of the first dipole in the postcentral gyrus, which was always located within 8 mm of the central sulcus, with an average distance of 3 mm. This finding provides an objective basis for using the SEP phase reversal method for cortical localization. We conclude that dipole source modeling of the cortical SEPs can be considered as an objective way of localizing the cortical hand sensory area

    THE SPATIAL LOCATION OF EEG ELECTRODES - LOCATING THE BEST-FITTING SPHERE RELATIVE TO CORTICAL ANATOMY

    No full text
    The location of the international 10-20 system electrode positions and 14 fiducial landmarks are described in cartesian coordinates (+/- 1.4 mm average accuracy). Six replications were obtained on 3 separate days from 4 normal subjects, who were compared to each other with a best-fit sphere algorithm. Test-retest reliability depended on the electrode position: the parasagittal electrodes were associated with greater measurement errors (maximum 7 mm) than midline locations. Location variability due to head shape was greatest in the temporal region, averaging 5 mm from the mean. For each subject's electrode locations a best-fitting sphere was determined (79-87 mm radius, 6% average error). A surface-fitting algorithm was used to transfer the electrode locations and best-fitting sphere to MR images of the brain and scalp. The center of the best-fitting sphere coincided with the floor of the third ventricle 5 mm anterior to the posterior commissure. The melding of EEG electrode location information with brain anatomy provides an empirical basis for associating hypothetical equivalent dipole locations with their anatomical substrates
    corecore